Quadratics

A quadratic equation is one of the form $a x^{2}+b x+c=0$.
A quadratic function is one of the form $f(x)=a x^{2}+b x+c$

Solving Quadratic Equations

We can solve a quadratic equation in four ways
(i) by factorising
(ii) by completing the square
(iii) by using the formula
(iv) graphically

Let's look at each of these in more detail.

Method (i) Factorising

Type 1
where $a=1$
e.g. $x^{2}+5 x+6=0$

We need to find two numbers that multiply to 6 and add to give 5 .
They are 2 and 3.
Then we rewrite the equation as

$$
\begin{array}{ll}
\underline{x^{2}+2 x} \underline{\underline{+3 x+6}}=0 & \text { and then we factorise the two parts } \\
\underline{x(x+2)+3(x+2)}=0 & \text { and then we factorise that. }
\end{array}
$$

if two things multiply to give 0 then one of them must be 0 , so

$$
\begin{array}{llll}
& (x+2)=0 & \text { or } & (x+3)=0 \\
\text { i.e. } & x=-2 & \text { or } & x=-3
\end{array}
$$

We have to be careful if there are minus signs
e.g.. $\quad x^{2}-4 x-12=0$

We need to find two numbers that multiply to -12 and add to give -4 .
They are 2 and -6 .
Then we rewrite the equation as

$$
\begin{array}{lll}
& \frac{x^{2}+2 x}{\underline{x-6 x-12}=0} \\
& \frac{x(x+2)}{-6(x+2)}=0 \quad \text { remember that }(-6) \times(+2)=-12 \\
& =0 \\
\text { So } & (x+2)(x-6)=0 \\
\text { i.e. } & x=-2 \quad \text { or } \quad \text { or } \quad(x-6)=0 \\
x=6
\end{array}
$$

Type 2 where $a \neq 1$

e.g. $2 x^{2}-5 x-3=0$

We add in an extra step we multiply the 2 by the -3 first to get -6 .
Then we need two numbers that multiply to give -6 and add to give -5 .
They are -6 and 1 .
Then we rewrite the equation as.

$$
\begin{aligned}
& 2 x^{2}-6 x+x-3=0 \\
& 2 x(x-3)+1(x-3)=0 \\
& (x-3)(2 x+1)=0
\end{aligned}
$$

So $\quad(x-3)=0 \quad$ or $\quad(2 x+1)=0$
i.e. $x=3 \quad$ or $\quad x=-1 / 2$

Method (ii) Completing the square

e.g.

$$
x^{2}+6 x+5=0
$$

Rewrite this as

$$
(x+3)^{2}-9+5=0 \quad \text { since } \quad(x+3)^{2}=(x+3)(x+3)=x^{2}+6 x+9
$$

So

$$
(x+3)^{2}=4
$$

So $\quad(x+3)= \pm \sqrt{4}= \pm 2$
So $\quad x+3=2 \quad$ or $\quad x+3=-2$
So

$$
x=-1 \quad \text { or }
$$

$$
x=-5
$$

e.g. 2

$$
2 x^{2}-5 x-3=0
$$

First we take out a factor of 2 , because this is an equation we can divide everything by 2 , if it was a function we would have to leave the factor outside the bracket.

So we get
So

If we were completing the square with the function we would get

$$
\begin{aligned}
& y=2 x^{2}-5 x-3 \\
& y=2\left(x^{2}-5 / 2 x-3 / 2\right) \\
& y=2\left[(x-5 / 4)^{2}-25 / 16-3 / 2\right] \\
& y=2\left[(x-5 / 4)^{2}-41 / 16\right] \\
& y=2(x-5 / 4)^{2}-49 / 8
\end{aligned}
$$

$$
\begin{aligned}
& x^{2}-5 / 2 x-3 / 2=0 \\
& (x-5 / 4)^{2}-25 / 16-3 / 2=0 \\
& (x-5 / 4)^{2}=49 / 16 \\
& (x-5 / 4)= \pm \sqrt{49 / 16}= \pm 7 / 4 \\
& x-5 / 4=7 / 4 \quad \text { or } \quad x-5 / 4=-7 / 4 \\
& x=3 \quad \text { or } \quad x=-1 / 2
\end{aligned}
$$

Method (iii) Using the formula

The formula is $\quad x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
e.g. $\quad 2 x^{2}-5 x-3=0$
so

$$
\begin{aligned}
& x=\frac{-(-5) \pm \sqrt{(-5)^{2}-4(2)(-3)}}{2(2)} \\
& x=\frac{5 \pm \sqrt{25-(-24)}}{4} \\
& x=\frac{5 \pm \sqrt{49}}{4} \\
& x=\frac{5 \pm 7}{4} \\
& x=\frac{12}{4}=3 \text { or } x=\frac{-2}{4}=\frac{-1}{2}
\end{aligned}
$$

Method (iv) Graphically

Plot the graph of the equation and see where it crosses the x axis.
e.g to solve $2 x^{2}-5 x-3=0$ we plot the graph of $y=2 x^{2}-5 x-3$

We can see the graph crosses the x axis at -0.5 and 3 , so the solutions to the equation are $x=-0.5$ and $x=3$.

The number of solutions to a quadratic equation.

A quadratic equation can have
(i) no real solutions
(ii) exactly 1 real solution
(iii) exactly two real solutions.

We can use part of the formula to determine this.
The determinant or discriminant of a quadratic is given by $\Delta=\sqrt{b^{2}-4 a c}$
If $\Delta<0$ then the equation has no real solutions.
If $\Delta=0$ then the equation has exactly one real solutions.
If $\Delta>0$ then the equation has exactly two real solutions.
e.g. How many solutions does $2 x^{2}+4 x+3=0$ have?
$\Delta=b^{2}-4 a c=4^{2}-4(2)(3)=16-24=-8$ so $\Delta<0$ so there are no real solutions.
e.g. How many solution does $9 x^{2}+6 x+1=0$
$\Delta=b^{2}-4 a c=6^{2}-4(9)(1)=36-36=0$ so $\Delta=0$ so there is exactly one real solution.
e.g. How many solution does $3 x^{2}+2 x-4=0$
$\Delta=b^{2}-4 a c=2^{2}-4(3)(-4)=4-(-48)=52$ so $\Delta>0$ so there are exactly two real solutions.

Graphing Quadratic Functions

There are four important points on a quadratic graph
(i) the turning point
(ii) the y intercept
(iii) the two x intercepts

The turning point can either be a maximum or a minimum.

If a >0 the graph will look like and have a minimum point.

If $\mathrm{a}<0$ the graph will look like \quad and have a maximum point

To find these points we need the three forms of the quadratic.
e.g.
the factorised form is
the completing the square form is

$$
\begin{aligned}
& y=x^{2}+2 x-15 \\
& y=(x-3)(x+5) \\
& y=(x+1)^{2}-16
\end{aligned}
$$

We find
(i) the turning point from $y=(x+1)^{2}-16$ the turning point is $(-1,-16)$ and it is a minimum
(ii) the y intercept from $y=x^{2}+2 x-15$ the y intercept is $(0,-15)$
(iii) the two x intercepts from $y=(x-3)(x+5)$ the x intercepts are $(3,0)$ and $(-5,0)$

We plot these points

and then join them up to draw the graph.

e.g. 2
the factorised form is
the completing the square form is
$y=-2 x^{2}+5 x+3$
$y=-(2 x+1)(x-3)$
$y=-2(x-5 / 4)^{2}+49 / 8$
We find
(i) the turning point from $y=-2(x-5 / 4)^{2}+49 / 8$ the turning point is $(5 / 4,49 / 8)$ and it is a mamimum.
(ii) the y intercept from $y=-2 x^{2}+5 x+3$ the y intercept is $(0,3)$
(iii) the two x intercepts from $y=-(2 x+1)(x-3)$ the x intercepts are $(-1 / 2,0)$ and $(3,0)$

We plot these points
and then join them up to draw the graph.

Solving quadratic inequalities

We can use a graph of a quadratic function to solve a quadratic inequality.
e.g. Solve $x^{2}-2 x-8 \geq 0$

First we plot the graph of $y=x^{2}-2 x-8$
then on the graph we decide where

$$
x^{2}-2 x-8 \geq 0 \text { i.e. where } y \geq 0
$$

From the graph we can see $x^{2}-2 x-8 \geq 0$ when $x \leq-3$ and $x \geq 4$

