Quadratics

A quadratic equation is one of the form $ax^2 + bx + c = 0$. A quadratic function is one of the form $f(x) = ax^2 + bx + c$

Solving Quadratic Equations

We can solve a quadratic equation in four ways

- (i) by factorising
- (ii) by completing the square
- (iii) by using the formula
- (iv) graphically

Let's look at each of these in more detail.

Method (i)	Factorising
Type 1	where $a = 1$

e.g. $x^2 + 5x + 6 = 0$

We need to find two numbers that multiply to 6 and add to give 5. They are 2 and 3. Then we rewrite the equation as

$\underline{x^2 + 2x + 3x + 6} = 0$	and then we factorise the two parts
x(x+2) + 3(x+2) = 0	and then we factorise that.
$(x+2)(\overline{x+3)} = 0$	

if two things multiply to give 0 then one of them must be 0, so

(x+2) = 0 or (x+3) = 0i.e. x = -2 or x = -3

We have to be careful if there are minus signs

e.g.. $x^2 - 4x - 12 = 0$

We need to find two numbers that multiply to -12 and add to give -4. They are 2 and -6. Then we rewrite the equation as

$$\frac{x^{2} + 2x - 6x - 12}{x(x+2) - 6(x+2)} = 0$$
 remember that $(-6) \times (+2) = -12$
$$\frac{x(x+2)(x-6) = 0}{(x+2) = 0}$$
 So $(x+2) = 0$ or $(x-6) = 0$
i.e. $x = -2$ or $x = 6$

e.g. $2x^2 - 5x - 3 = 0$

We add in an extra step we multiply the 2 by the -3 first to get -6. Then we need two numbers that multiply to give -6 and add to give -5. They are -6 and 1.

Then we rewrite the equation as.

 $\frac{2x^2 - 6x \pm x - 3}{2x(x - 3) \pm 1(x - 3)} = 0$ $\frac{2x(x - 3) \pm 1(x - 3)}{(x - 3)(2x \pm 1)} = 0$ So (x - 3) = 0 or $(2x \pm 1) = 0$ i.e. x = 3 or $x = -\frac{1}{2}$

Method (ii) Completing the square

e.g.

 $x^2 + 6x + 5 = 0$

Rewrite this as $(x+3)^2 - 9 + 5 = 0$ since $(x+3)^2 = (x+3)(x+3) = x^2 + 6x + 9$

So $(x+3)^2 = 4$

$50 \qquad (x+3) = \pm \sqrt{4} = \pm 2$	So	$(x+3) = \pm\sqrt{4} = \pm 2$
--	----	-------------------------------

	() .		
So	x + 3 = 2	or	x + 3 = -2
C.	1		

50	x = -1	Of	x = -3

e.g. 2 $2x^2 - 5x - 3 = 0$

First we take out a factor of 2, because this is an equation we can divide everything by 2, if it was a function we would have to leave the factor outside the bracket.

So

So we get

$$x^{2} - \frac{5}{2}x - \frac{3}{2} = 0$$

$$(x - \frac{5}{4})^{2} - \frac{25}{16} - \frac{3}{2} = 0$$

$$(x - \frac{5}{4})^{2} = \frac{49}{16}$$

$$(x - \frac{5}{4}) = \pm \sqrt{\frac{49}{16}} = \pm \frac{7}{4}$$

$$x - \frac{5}{4} = \frac{7}{4} \quad \text{or} \quad x - \frac{5}{4} = -\frac{7}{4}$$

$$x = 3 \quad \text{or} \quad x = -\frac{1}{2}$$

If we were completing the square with the function we would get

$$y = 2x^{2} - 5x - 3$$

$$y = 2(x^{2} - \frac{5}{2}x - \frac{3}{2})$$

$$y = 2[(x - \frac{5}{4})^{2} - \frac{25}{16} - \frac{3}{2}]$$

$$y = 2[(x - \frac{5}{4})^{2} - \frac{49}{16}]$$

$$y = 2(x - \frac{5}{4})^{2} - \frac{49}{8}$$

Method (iii) Using the formula

The formula is $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ e.g. $2x^2 - 5x - 3 = 0$ so $x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4(2)(-3)}}{2(2)}$ $x = \frac{5 \pm \sqrt{25 - (-24)}}{4}$ $x = \frac{5 \pm \sqrt{49}}{4}$ $x = \frac{5 \pm 7}{4}$ $x = \frac{12}{4} = 3 \text{ or } x = \frac{-2}{4} = \frac{-1}{2}$

Method (iv) Graphically

Plot the graph of the equation and see where it crosses the *x* axis.

e.g to solve $2x^2 - 5x - 3 = 0$ we plot the graph of $y = 2x^2 - 5x - 3$

We can see the graph crosses the *x* axis at -0.5 and 3, so the solutions to the equation are x = -0.5 and x = 3.

The number of solutions to a quadratic equation.

- A quadratic equation can have
 - (i) no real solutions
 - (ii) exactly 1 real solution
 - (iii) exactly two real solutions.

We can use part of the formula to determine this.

The determinant or discriminant of a quadratic is given by $\Delta = \sqrt{b^2 - 4ac}$

If $\Delta < 0$ then the equation has no real solutions.

If $\Delta = 0$ then the equation has exactly one real solutions.

- If $\Delta > 0$ then the equation has exactly two real solutions.
- e.g. How many solutions does $2x^2 + 4x + 3 = 0$ have?

 $\Delta = b^2 - 4ac = 4^2 - 4(2)(3) = 16 - 24 = -8$ so $\Delta < 0$ so there are no real solutions.

e.g. How many solution does $9x^2 + 6x + 1 = 0$

 $\Delta = b^2 - 4ac = 6^2 - 4(9)(1) = 36 - 36 = 0$ so $\Delta = 0$ so there is exactly one real solution.

e.g. How many solution does $3x^2 + 2x - 4 = 0$

 $\Delta = b^2 - 4ac = 2^2 - 4(3)(-4) = 4 - (-48) = 52 \text{ so } \Delta > 0 \text{ so there are exactly two real solutions.}$

Graphing Quadratic Functions

There are four important points on a quadratic graph

- (i) the turning point
- (ii) the y intercept
- (iii) the two x intercepts

The turning point can either be a maximum or a minimum.

To find these points we need the three forms of the quadratic.

e.g.	$y = x^2 + 2x - 15$
the factorised form is	y = (x-3)(x+5)
the completing the square form is	$y = (x+1)^2 - 16$

We find

- (i) the turning point from $y = (x+1)^2 16$ the turning point is (-1,-16) and it is a minimum
- (ii) the y intercept from $y = x^2 + 2x 15$ the y intercept is (0,-15)
- (iii) the two x intercepts from y = (x-3)(x+5) the x intercepts are (3,0) and (-5,0)

We plot these points

and then join them up to draw the graph.

e.g.2	$y = -2x^2 + 5x + 3$
the factorised form is	y = -(2x+1)(x-3)
the completing the square form is	$y = -2(x - \frac{5}{4})^2 + \frac{49}{8}$

We find

- (i) the turning point from $y = -2(x \frac{5}{4})^2 + \frac{49}{8}$ the turning point is $(\frac{5}{4}, \frac{49}{8})$ and it is a mamimum.
- (ii) the y intercept from $y = -2x^2 + 5x + 3$ the y intercept is (0,3)
- (iii) the two x intercepts from y = -(2x+1)(x-3) the x intercepts are $(-\frac{1}{2}, 0)$ and (3,0)

We plot these points

and then join them up to draw the graph.

Solving quadratic inequalities

We can use a graph of a quadratic function to solve a quadratic inequality.

e.g. Solve $x^2 - 2x - 8 \ge 0$ First we plot the graph of $y = x^2 - 2x - 8$ then

From the graph we can see $x^2 - 2x - 8 \ge 0$ when $x \le -3$ and $x \ge 4$