

Carbon cycle

B1.5 Energy in biomass

Recycling organic waste

Pyramids of biomass

Energy transfers

Pyramids of biomass

- Biomass is the amount of living thing available to the next level in a food chain – the mass of material in living organisms
- It is the total mass without the mass of water (*dry mass in grams*)
- Pyramids of biomass show how much energy is available at levels in a food chain

Energy transfers

Much of the energy lost in:

- *Movement* (muscles contracting)
- Heat
- *Keeping a constant body* • *temperature* (energy needed to keep warm or cool down)
- Waste (herbivores can't digest all they eat, excess protein passed out as urea)

in food

1797 KJ in urine and faeces

Decay processes

Detritus feeders (e.g. Maggots, worms) start the process by eating dead animals and producing waste material

Decomposers (microorganisms) digest everything, using some of the nutrients to grow and reproduce

They produce waste products – CO_2 , water and nutrients

This recycling means the soil contains mineral ions plants need to grow and cleans up dead organisms

Conditions for decay:

- <u>Warm</u>
 - Chemical reactions in microorganisms work faster when warm
 - Reactions slow down and stop if too cold, enzymes denatured if too hot
- <u>Moist</u>
 - Easier to dissolve food, prevents drying out
- Plenty of oxygen
 - Decomposers respire, need oxygen to release energy

Uses: sewage treatment works, compost

Carbon cycle

The amount of carbon is fixed

<u>Photosynthesis</u>: green
 plants and algae remove
 CO2 from the atmosphere
 passed on when plants
 are eaten

Carbon dioxide + water \rightarrow glucose + oxygen

- <u>Respiration</u>: living organisms use oxygen to break down glucose CO2 is a waste product. Decomposers respire too
- <u>Combustion</u>: fossil fuels contain carbon , when we burn then CO2 is produced

Fuel + oxygen \rightarrow carbon dioxide + water

Recycling organic waste

 Organic waste – (e.g. Vegetable peelings) doesn't rot easily in landfill, it forms a liquid that can pollute waterways and methane gas which contributes to global warming

Making compost:

To speed up the process:

- Mixing regularly helps oxygen get in
- Warmer conditions (up to about 70C)
- Moist conditions

Methods: compost heap, black bag, compost bin, council composting

Exam questions

	Atmosphere Y Fossil fuels Algae Microorganisms Animals	
2 (a)	Name the processes shown by arrows X and Y .	
	A	
	Y	n orko)
2 (b)	Describe the part played by algae in this carbon cycle.	Tarksj
	(3 1	iarks)
2 (c)	In tropical rainforests process ${\bf X}$ is much faster than in most other habitats.	
	Suggest why.	

question	answers	extra information	mark
2 (a)	X respiration	correct order only allow decay / decomposition / rotting ignore breakdown / disintegrate	1
	Y combustion / burning		1
2 (b)	any three from:		3
	 photosynthesise / absorb carbon dioxide 	accept are producers or produce / make biomass / glucose / other named do not accept photosynthesis releases CO ₂	
	 release carbon dioxide / respire 		
	eaten by animals		
	 fed on / decayed by microorganisms 	ignore eaten by microorganisms	
2 (c)	any two from:		2
	(in tropical rainforest conditions are)		
	 warm(er) / hot 		
	damp / moist / wet / humid	ignore rain	
	a lot of microorganisms		
	a lot of material to decay		
		allow warm(er) so enzymes work faster for 2 marks	
Total			7

8 The diagram shows the annual flow of energy through a habitat.

The figures are in kJm⁻².

8 (a) (i) Calculate the percentage of the energy in sunlight that was transferred into energy in the green plants.

Show clearly how you work out your answer.

Answer =% (2 marks) 8 (a) (ii) Suggest reasons why the percentage energy transfer you calculated in part (a)(i) was so low. (2 marks)

8 (b) Compare the amount of energy transferred to the insect-eating birds with the amount transferred to the predatory birds.

Suggest explanations for the difference in the amount of energy transferred to the two types of bird.

(3 marks)

8 (a)(i)	0.6 or 6 x 10 ⁻¹	for correct answer if no / incorrect answer $\frac{2.4 \times 10^4}{4 \times 10^6} \times 100$ or	2
		0.006 or 6 x 10 ⁻³ gains 1 mark	
8 (a)(ii)	any two from:		2
	reflected	ignore some of light is green	
	 not absorbed or misses chloroplasts / chlorophyll 	allow transmitted or passes through leaves allow hits other plant parts	
	wrong wavelength		
	photosynthesis inefficient	accept other limiting factors /	
	 allow some lost through respiration / as heat (from respiration) 	nameu	
8 (b)	energy lost via faeces / not digested / waste / excreted (of insect-eating birds)		1
	energy loss via respiration / movement / muscle contraction / heat (by insect-eating bird)	accept examples of muscle contraction do not accept energy used for respiration	1
	some of (insect eating) bird not eaten <u>but</u> all / most / more of insect is eaten		1

3 Students investigated a food chain in a garden.

The students found 650 aphids feeding on one bean plant. Five ladybirds were feeding on the aphids.

3 (a) (i) Draw a pyramid of biomass for this food chain. Label the pyramid.

3 (a) (ii)	The biomass in the five ladybirds is less than the biomass in the bean plant.	
	Give two reasons why.	
	(2 morko)	
	(2 marks)	
3 (b)	The carbon in dead bean plants is returned to the atmosphere via the carbon cycle.	
	Describe this part of the carbon cycle.	
	(4 marks)	

3(a)(i)	triangular pyramid with 3 layers	may be as blocks or as triangle ignore food chains and arrows	1
	layers appropriately labelled: bean / plant aphid, ladybird	labelled in food chain order must not contradict correct pyramid	1
		allow correctly labelled inverted pyramid for 2 marks	
3(a)(ii)	any two from: (for aphid / ladybird) • not all digested / faeces	ignore energy	2
	 loss in unite loss of CO₂ not all eaten 	ignore loss of CO ₂ from bean plant if none of first 3 points given then allow waste (materials) / excretion for 1 mark	
3(b)	microorganisms / microbes / bacteria / fungi / decomposers / detritivores / named	do not accept germs allow mould ignore aphids	1
	decay / breakdown / digest / decompose / rot (bean plant) respiration (of microorganisms etc	Ignore eat allow burning / combustion	1
	carbon dioxide released (from respiration of microorganisms etc / aphids)	allow carbon dioxide released / produced (from burning / combustion)	1
		ignore other parts of the carbon cycle ignore formation of fossil fuels	

1 (c) It is important that carbon is cycled through living things.

> After he has picked the peas, the gardener puts the dead pea plants onto a compost heap.

Over the next few months, the carbon in the carbon compounds from the pea plants is returned to the air.

Describe how.

(4 marks)

(4 marks)

.

.

1(c)	microorganisms / bacteria / fungi / decomposers / detritus feeders / named		1
	decompose / rot / break down / decay / digest	ignore feed / eat	1
	(these organisms) respire	do not allow respiration by pea (plants)	1
	(decay / respiration / microorganisms etc) releases carbon dioxide	do not allow combustion / fossilisation	1

The table gives information about the four species of bird in winter.

Bird species	Mean body mass in grams	Mean energy needed in kJ per day	Mean percentage of day spent feeding
Great tit	21	84.2	75
Blue tit	12	62.4	81
Coal tit	9	49.5	88
Long-tailed tit	7	42.0	92

8 (a) (i) Calculate the energy needed per day per gram of body mass for the blue tit.

Answer =kJ per day per gram of body mass (2 marks)

8 (a) (ii)	Describe the trend for energy needed per day per gram of body mass for the four species of bird.
0 (-) (!!!)	(1 mark)
o (a) (iii)	Suggest an explanation for the trend you have described in part (a)(ii).
8 (b)	(2 marks) Describe and explain the trend shown by the data for the time spent feeding in winter for the birds.
	(2 marks)

8(a)(i)	5.2	award 2 marks for correct answer, irrespective of working or lack of it award 1 mark for 62.4÷12 only with incorrect or no answer	2
8(a)(ii)	the smaller the (mass of the) bird the more energy is needed (per gram of body mass)	allow converse ignore figures	1
8(a)(iii)	smaller bird has larger surface area : volume / mass ratio	allow converse	1
	so heat / energy lost more quickly	allow lose more heat / energy if (a)(ii) describes a trend of more energy with increasing body mass allow one mark for idea of more energy needed for flight	1
8(b)	larger birds spend less time feeding	accept converse allow the less energy they need per day the longer they spend feeding	1
	since they need less food per gram of body mass (to satisfy energy needs)		1